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SUMMARY

In this paper a semi-implicit method for three-dimensional circulation in isopycnal co-ordinates is derived and
discussed. It is assumed that the flow is hydrostatic and characterized by isopycnal surfaces which can be
represented by explicit, single-valued functions. The hydrostatic pressure is determined by using the conjugate
gradient method to solve a block pentadiagonal linear system. The horizontal velocities are determined by
solving a large set of tridiagonal systems. The stability of the resulting algorithm is shown to be independent of
the surface and internal gravity wave speeds. © 1997 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A characteristic analysis of the two-dimensional, vertically integrated shallow water equations shows
that the celerity term ./(gH) in the equation for the characteristic cone arises from the barotropic
pressure gradient in the momentum equations and from the velocity derivatives in the free surface
equation.' Results of this analysis have led to a practical semi-implicit method which has been proved
to be stable and which has been extended to the three-dimensional equations where the pressure is
assumed to be in hydrostatic equilibrium.? The Courant—Friedrichs—Lewy (CFL) stability condition
relating the time step to the free surface wave speed is not required, because the barotropic pressure
gradient in the momentum equations and the velocities in the vertically integrated continuity equation
are finite-differenced implicitly.

Three-dimensional applications of the above semi-implicit scheme to lakes, estuaries and coastal
seas have confirmed that this algorithm is stable and highly efficient (see e.g. Reference 2). Moreover,
when only one vertical layer is specified, this method reduces to the semi-implicit method for the
two-dimensional, vertically integrated shallow water equations as described in Reference 1 (see also
Reference 3 for further details). The resulting two- and three-dimensional methods, however, are only
first-order-accurate in time and often introduce unacceptable artificial damping.
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646 V. CASULLI

The stability, accuracy and efficiency of this three-dimensional algorithm have been studied in
Reference 4, where the method has been further generalized by introducing an implicitness parameter
0. When 6 = 1, this method reverts to the semi-implicit scheme proposed in Reference 2. When 0 = %,
the pressure gradient in the momentum equations and the velocities in the free surface equation are
evaluated as an average of their values at time levels n and n + 1, so that the discretization of these
terms is second-order-accurate in time. Since the vertical viscosity terms have been discretized
implicitly, it is proved that for% < 0 < 1 a mild stability condition is required on the time step which
is related only to the horizontal discretization increments Ax and Ay through the horizontal viscosity
coefficient. The three-dimensional simulation of baroclinic flows can be obtained in a direct way by
including the baroclinic pressure terms in the horizontal momentum equations. These terms are
coupled, through an equation of state, to a convection—diffusion equation for each conserved quantity
such as salt, temperature and/or concentration of suspended sediment. The explicit treatment of the
baroclinic pressure terms adds an additional stability restriction which relates the time step to the
speed of internal waves. Nevertheless, an efficient and robust implementation of such a simple and
reliable numerical method has resulted in a code (TRIM-3D) capable of handling two- and three-
dimensional problems with extremely fine spatial resolution and relatively large time steps.

In this paper a semi-implicit isopycnal circulation model is presented as an alternative to traditional
three-dimensional models in Cartesian (x, y, z) co-ordinates. The present formulation can be regarded
as being three-dimensional in (x, y, p) co-ordinates and is better suited for studying stably stratified
baroclinic circulation. Numerically, the new internal and external free surface locations are computed
in a similar fashion as in Reference 1 by using the conjugate gradient method to solve a block
pentadiagonal linear system. The horizontal velocity in each isopycnal layer is then determined by
solving a large set of small tridiagonal systems. The stability of the resulting algorithm is shown to be
independent of the surface and internal wave speeds. The convective and viscous terms in the
momentum equations are conveniently discretized using a Eulerian—-Lagrangian approach. The
resulting algorithm conserves mass and volume and applies to simulations of complex three-
dimensional baroclinic flows using fine spatial resolution and relatively large time steps. Neither
artificial diffusion nor spurious oscillations are generated. This formulation is fully vectorizable and
accounts naturally for vanishing layer thickness.

In the next section the governing equations of a three-dimensional isopycnal flow are introduced
along with the corresponding boundary conditions at the layer interfaces. In Section 3 the basic semi-
implicit finite difference discretization is given for the governing equations and for the corresponding
boundary conditions. Section 4 discusses a practical solution algorithm which enables an efficient
implementation of the method. A linearized stability analysis of the present method is outlined in
Section 5. The essential properties of the model are summarized in Section 6 and, finally, in Section 7
the numerical results from two different test cases are presented and discussed.

2. GOVERNING EQUATIONS

Assuming stable stratification, the fluid density is monotonic increasing downwards. If density is
conserved, as is approximately the case for most geophysical flows, considerable mathematical
simplifications follow from considering the three-dimensional governing equations expressed in
terms of density p rather than the vertical z-co-ordinate.” A layered isopycnal model is an ideal fluid
system that consists of a finite number of moving layers stacked one upon another and each having a
uniform density. For a system of M layers with densities p; > p, > -+ > p,, > 0, let z=n(x, y, 1)
be the surface of separation between layer & and the layer above k+ 1. The surfaces z=1#(x, y) and
z=mnp(x, y, f) represent the fixed bottom and the free surface respectively (see Figure 1).
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bottom

Figure 1. Isopycnal configuration

By setting p,.1 =0, the governing equations can be written, after turbulent averaging and under
the hydrostatic and Boussinesq approximations, in the form

uy duy, duy, (& py— P n(Pu | Pu\ | Tere ~ T

—_— —_— V,— = — 9 — _ _— _— _—

a T Ty T Em s )T e Y ) Y ()
vy vy vy 9 < L P = P > h<azvk 32Vk) 7LwZ+1/2 - Tiygfl/z
e B S I [ Al S e

or - Fax Tt gy W \nsk  Po o2 T ay? M — My

where u(x, y, ©) and vi(x, y, t) are the horizontal, layer-averaged velocity components in the x-
and y-direction respectively of the kth isopycnal layer (k= 1,2,..., M), t is the time, g is the
gravitational acceleration, v" is the horizontal eddy viscosity coefficient and Tyy1/2 and 7 12
represent the shear stress between layers in the x- and y-direction, respectively.

The continuity equations, expressing the principle of conservation of mass, for each layer are given
by

3 3 (& (&
ﬂ + & ( Z (nm - nml)um) + a_y (El(nm - nml)vm> =0. (2)

ot m=1

The boundary conditions at the free surface are specified by prescribing the wind stresses 7)., »
and 7y, , as

T)zi//+1/2 = (U, — uy), TX4+1/2 = 71(Va — Vi), 3)

where yr is a non-negative wind stress coefficient and u, and v, are the prescribed wind velocity
components in the x- and y-direction respectively. At the sediment—water interface the bottom friction
is specified by

T2 = VB> T = TBV1s “)

where yg is a non-negative bottom friction coefficient. Typically, yg can be given by the Manning—
Chezy formula or by fitting it to a turbulent boundary layer. Finally, the shear stress between layers is
taken to be

u —Uu A% -V
Thpyp =20 L& Thpyp =20V L~ k=1,2,....M—1, (5

M1 = N1 N1 = N1
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where v¥ is a vertical eddy viscosity coefficient. This coefficient can be determined from an
appropriate turbulence closure model, which is beyond the scope of the present investigation. Here it
will only be assumed that v" is a prescribed non-negative function of space and time.

3. NUMERICAL APPROXIMATION

For stably stratified flows a numerical model in an isopycnal co-ordinate system is more attractive
than models in either Cartesian (x, y, z) co-ordinates or o-co-ordinates which are based on
geometrical rather than physical considerations. Consequently, various numerical schemes for
equations (1) and (2) have been studied and applied by several authors (see e.g. References 6-10).

In order to obtain an efficient numerical method whose stability is independent of the internal and
free surface gravity wave speeds, a semi-implicit scheme is derived. The gradient of surface
elevations in the horizontal momentum equations (1) and the velocity in the free surface equations (2)
are discretized implicitly by the §-method. Moreover, for stability the vertical viscosity terms (3)—(5)
will be discretized implicitly.

The physical domain is subdivided into N.N, rectangular cells of length Ax and width Ay,
respectively. Each cell is numbered at its centre with indices i and j. The discrete velocities u; are
then defined at half-integer i and integer j; v, are defined at integer i and half-integer j. Finally, #, are
defined at integer i, j.

A semi-implicit discretization for the momentum equations (1) takes the form

At ¥ p, —p
+1 +1 +1 +1
M?+l/2,j,k = Fu?+l/2,j,k - gﬂ . [9(’7?+1,j,m - ’7:—',1-.”1) +0 - 9)(n?+l,j,m - ’/’;l,j,m)]
m=k pO
+1 +1 +1 +1
nyy VZ+1/2(M?+1/2,j,k+l - uzr'l+l/2,j,k)/A17?+l/2,j,k+1/2 - Vz—l/z(“?+1/2,j,k - “?+1/2.j,k—1)/A”?H/z,j,k—l/z
A'i?ﬂ/z,j,k
(6)
At M p,—p
1 +1 1 1
Vit ok = FV s — gA_y Zkim o PO sy — M) (L= OV gy — 117 00)]
m=

+1 +1 +1 +1
4 A vz+l/2(‘/i7,j+l/2,k+l - V7,j+1/2,k)/A’7;1,j+1/2,k+1/2 - "Ll/z("zﬁl/z,k - V?,j-&-l/z,k—l)/Anzr‘l,j+l/2,k71/2

AN 12k
(7

where An;=n; — ni1 denotes the layer thickness which also depends on the spatial location and on
the time. Az is allowed to vanish in order to account for variable geometries and for the wetting and
drying of isopycnal layers. Of course, the corresponding momentum equation (6) or (7) is not defined
at a grid point characterized by An,=0 and accordingly the velocity value at this point is not
relevant. Equations (6) and (7) also include the implicit discretizations of the boundary conditions (3)
and (4) at the sediment—water interface and at the free surface for k=1 and k=M respectively.
Finally, F' denotes a finite difference operator corresponding to the explicit discretization of the
convective and horizontal viscosity terms. A particular form for F can be chosen in a variety of ways;
for example, a simple space-centred discretization can be used for the convective terms when a
sufficiently large horizontal viscosity is being used. Alternatively, the upwind discretization does not
require any physical viscosity, but large, and often unrealistic, numerical viscosity is produced by this
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THREE-DIMENSIONAL FREE SURFACE FLOW 649

choice. A more convenient formulation of F, from both the stability and the accuracy point of view,
results from use of an explicit Eulerian—Lagrangian discretization. In this case F is defined as

At
n _.n h n n n
Fuii 10,6 = Wit1j2—a, j—bk TV A2 (W4 3/2—a, j—bk — 2Uis1j2—a, j—bk + Uiz1/2—a, j—b k)

At
h n n n
+v _A 5 W1 oma, jr1—b ke — 2UWik1j2—a, j—bk Uik /2—a, jm1-b.00)s (8

L At
FV ik = Vica, j+1/2- bk+V A Vipi—a i1 /2-bk = 2Viea jr1/2-bk T Vicl—a j+1/2-b.k)

h
+v AT}Z(VI’La, jH+3/2—-bk — v, jHlj2—bk T Via, j—1 /Zfb,k)’ ©

where a and b denote the Lagrangian displacement caused by the convective terms.'

For each i, j and for any choice used for F, equations (6) and (7) constitute a set of linear
tridiagonal systems which, however, are coupled to the unknown water surface elevations #™*'. In
order to determine 17”“ and for numerical stability, the new velocity field is required to satisfy the
discrete analogue of the free surface equations (2):

At k k
1 1 1
’7:71{ =1 gk T B ( > A'/’lr'l+1/2,j,mulr'li1/2,j,m -2 A’??—l/z,j,m”?irl/z,j,m)>
m=1 m=1
9 At A k A n n+1
- AT’ Z i j+1/2.m u+1/2m mgl M j—1/2.mVi j—1/2.m
k k
n n n n
—(1- B)A_x (Zl A’?i+1/2,j,m”i+1/2,j,m - Zl A’h—l/z,j,m”i—l/z.j,m>
m= m=
At k n J k n
-(1- H)A_ (Z AN} i1 Vi 1 2m — 2 A'/’i,jl/Z,mVZj—l/Lm)' (10)
y m=1 m=1

Equations (6), (7) and (10) now form a linear system of 3MN,N, equations with unknowns
wil, vt and "t}
i+1/2, 5.k Vi j+1/2.k Wi jke

4. SOLUTION ALGORITHM

For computational convenience, since a system of 3MN,N, equations can be quite large even for
modest values of N,, N, and M, this system is first reduced to a smaller, block pentadiagonal system
of only MN,N, equations in which n”jl are the only unknowns. Specifically, upon multiplication by

Ayt 12, )k and A’?,, 12,0 equations (6), (7) and (10) are first written in matrix notation as

0At

A?+1/2,1U?f11/2,j = Gzr‘l+1/zj & polx 1+l/2 JR("IIH j "lzn;rl) (11

A?,j+l/2Vzr'l,j'_-ﬁl-l/2 =Gj 1 — g@_AAt ?,j+1/2R(”'IZﬂl "l?j_l ; (12)
11771 5? i [(SH-I /2, ])TU?If/z, i (Si, /2,_/)TU?j11/2, j]

[(s 1) Vi = 8102 Vit ol (13)
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where G, ;, G} 11/, and &; ; are vectors containing all the explicit terms in equations (6), (7) and
(10) respectively, while U, V, 7, S, R and A are defined as

- ot - —

o at -l A
Uii1)2, M Vi 12 i
+1 +1 +1
Wi/, M1 Vi 2M—1 iy m—1
nt1 +1 n+1
Ui, = | Yitizgm-2 |, = Vijtam-a |, = | M- |,
+1 +1 +1
L #iega L Vijrian L Mg
™ Any, 0
Ay Anyyy
S=1| Ay, Ay, Any, ;
L An, An, An, oo Any
Py — Pu+1 0
Pym—1 — Pum
R = Pr—2 = Pm-1 ,
- 0 P1— P2 |
A=
B VY100t W, AL -
Ay, + M—1/2 Iy _Vu-12 0
A'7M71/2 A’71&471/2
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Then formal substitution of the expressions for Uf‘fll/z’ j and Vf’;l_l 2 from (11) and (12) into (13)
yields

- AP e N . e s s
REW — g0 S (STATSTL AR — 5 — [STATISIL o RS — )
0
, AP TA—lqm ~ 1 ~ bl Ta-lgm bl =atl
— g0 , Ayz{[s ATSE M — ) — [STATSE (] — o))
0
— 5 0 STATIGT . — STATIGT 1, ) — 02 (STATIGT L — [STAIGT )
=0, Ax i+1/2,] i—1/2,j Ay i,j+1/2 i j—1/21s

(14)
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where ) = Rm. Since the matrix A is an M-matrix (see e.g. Reference 11, Chap. 15), A™! has non-
negative elements everywhere. Therefore the matrix STA™'S is also symmetric and non- negative.
Hence equations (14) constitute a block pentadiagonal system of equations for n”“ which is
symmetric and positive definite. Thus it has a unique solution which can be efficiently determined by
a preconditioned conjugate gradient method. Once the new locations of the density interfaces have
been determined, equations (11) and (12) are used to evaluate the new velocities U;’jfll/z, ;and V,"ﬂl 2
throughout the flow domain.

5. STABILITY ANALYSIS

A rigorous stability analysis of a non-linear numerical model is quite complex and not always
possible. In this section the stability of the semi-implicit finite difference method (11)—(13) will be
analysed by using the von Neumann method under the simplifying assumptions that the governing
differential equations (1) and (2) are linear, with constant coefficients and defined on an infinite
horizontal domain, or with periodic boundary conditions on a finite domain. Additionally, the layer
thickness Az and the density differences Ap are assumed to be constant. Thus, by neglecting the non-
linear convective terms and the wind speed and by assuming that yr, yg and v" in the matrix A are
non-negative constants, the difference equations (11)—(13) reduce to

AU, ;+6r S(Tlf'fll/ -7 = AR - (1 G)V S(”‘lz+1 j i), (15)
AV"/+1/2+9r S(*lf'ﬂ1 TI;‘;LI) = A17FV7J+1/2 ( 9)1" S(”l], L+l nlr{j)’ (16)
"+] +9— (STU7:—11/2 J STU?ﬂ/Z ]) + 9 (STV:«-J,—-IH/2 STV”/ 1/2)

= "l?,j (1- ) (ST i+1/2,) STU?—]/z,A,‘) (1- ) (ST ij+1/2 = STV;l,j—l/z)’
(17
where FU/, , ; and FV] ., , are the explicit finite difference discretizations of the horizontal eddy
viscosity terms and r is the reduced gravity r=gAp/po.
Theorem

The semi-implicit finite difference scheme (15)—(17) is stable in the von Neumann sense if
% < 0 < 1 and if the time step A¢ satisfies the inequality

11N\
h

Proof. By replacing U, , ; 412 and my; in (15)—(17) with the corresponding Fourier
components Uelli+1/2)2+i8] Vie ‘[""*6“/2)/3 and 0'el®HP  after some simplifications, (15)—(17)
become

AU 4+ i0prSy'! = AU — i(1 — 0)prSyy’, (19)
AV L i0grSWH = FARVT — (1 — 0)grSY’, (20)
A+ ip0STU! +ighS™V'T = /" —ip(1 — 0)STU” +ig(1 — 0)STV", 1)
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where ﬁ”, V" and 7" are the amplitude functions of U, V and m at time level ¢, respectively,
i=./(—1), « and B are the x- and y-phase angles respectively, p = 2(At/Ax)sin(o/2),
q = 2(At/Ay)sin(f/2) and the amplification factor of the explicit difference operator F is given by

f=1- 2th¢<1 - AC;’ZS(“) 1= Acyof(ﬁ )>. 22)
Equations (19)—(21) can be written in a more compact matrix form as
PW"! = QW”, (23)
where
R A 0 ipOrS
W =| v |, P=| 0 A ighrS |,
K% ip0S™T ig0ST 1
r Ayl 0 —ip(1 — 0)rS
Q= 0 SfAnI —ig(1 —0)rS |,
| —ip(1 —O)ST  —ig(1 — 0)ST I

with I being the identity matrix of order M. Thus the amplification matrix of the method is G =P~ 'Q
and a condition for stability is that the spectral radius of G does not exceed unity independently of o
and f. The characteristic polynomial of the matrix G is det(Q — AP) = 0, i.e.

SAnL — A 0 —iproS
det(Q—7P)=det| 0  fAI—JA —igreS | =0, (24)
—ipwST —igwST (1 -1

where w =1 — 0+ /0. Next to be shown is that equation (24) cannot be satisfied by any complex
number A when Al > 1. Assume that IAl> 1 and consider the matrix A which is real, symmetric,
strictly diagonally dominant and with positive eigenvalues 4; > A#. Note that when inequality (18) is
satisfied, equation (22) implies | /1 < 1. Therefore | fAnl < IAAnl and hence the matrix fAyl — 1A
remains strictly diagonally dominant and invertible. Consider then

I 0 0
T= 0 I 01,
ipoST(FARL — A" iqoST(f AN — 2A)TT 1
so that
det(Q — AP) = det(T) det(Q — AP) = det[T(Q — AP)]. (25)
Thus equation (24) can also be written as
fAnl —JA 0 —iproS
det 0 fAnl —JA —igroS | =0, (26)
0 0 B
where
B = r(p* + ¢*)*ST(FAnl — JA) 'S + (1 — D)L (27)

Since det(f Ayl — AA) # 0, it is only necessary to show that for% < 0 < 1 one has det(B) # 0. On the
other hand, fAyI — AA admits an LDL" decomposition, where L is a unitary lower triangular matrix
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and D is a diagonal matrix with diagonal elements given by fAn — A/J;. Consequently, the
eigenvalues of B are given by

@+ ¢*)?

Iy = A
8= A I,

+1- (28)

Our objective now is to prove that for % <0<1, IA>1 and for every k one has Ag#0 or,
equivalently,

d = Ar(* + @A) + (1 = ) (f Ay — 1) #0. (29)

For this purpose let A=a+ib, so that substitution of the expression for w into (29), after simple
manipulations, yields

d =[iy + A r(p* + ¢)I(@® — b)) +fAn + AnPr(p* + ¢*)(1 — 0)
— [ +fAn = 20(1 — AP (P + ¢)]a
+i{20(1 — OyrA* (P* + ¢*)b — (O + fANb + 2[1 + O*rA*(0* + ¢*)]ab}. (30)

Consider first the case =0 and lal > 1. In this case d is real and satisfies the inequality

d =@ +rA(p* + ¢*)(1 — 0+ 0a)’ + fAn — (y + fAn)a
> Wd + A — (A +fAna = (Qga+fAn)a—1) > 0. (31)
Consider next the case b 0. In this case the imaginary part of d is non-zero unless a is given by

g A +fAn —20(1 — 9)Ar]2r(p2 + qz)
B 20 + P Anr(p? + 7)) '

(32)

Should the imaginary part of d be zero, for 1 < 0 < 1, since b*>> 1 — @, use of (32) yields the

following inequality for the real part of d:

1
2

d < [Jy + OCAPrP* + )2 — 1) +fAn + Apr(* + ¢*)(1 — 0)
— [ +£An = 20(1 — O)AP*r(p* + ¢)]a
= fAn + A r(® + ¢*)(1 — 0)* — [y + O*An*r(p* + ¢*)] < 0. (33)

Thus, when % < 0 < 1, under the stability restriction (18) the amplification matrix G does not have
eigenvalues A such that |4l > 1. Therefore the spectral radius of G is no greater than unity and the
scheme (15)—(17) is stable in the von Neumann sense.

Note that, as expected, the stability of the semi-implicit finite difference scheme (15)—(17) is
independent of the celerity, bottom friction, wind stress and vertical viscosity. It does depend on the
horizontal viscosity through the mild stability condition (18). This method becomes unconditionally
stable when the horizontal viscosity terms are neglected.

The presence of non-linear convective terms may affect the stability of the method when they are
discretized explicitly by standard schemes which use, for example, central or upwind differences. Use
of Eulerian—-Lagrangian methods as described in Reference 1 is always recommended because of
their higher accuracy and because additional conditions for the stability are not required.
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6. PROPERTIES OF METHOD

An important property of the present formulation is that each layer thickness A is allowed to vanish.
Thus each isopycnal layer k does not need to be present everywhere at all times. Of course, no flux
will result through those cell faces characterized by An; =0 and flooding and drying of tidal flats are
naturally included in this model.

Local and global conservation properties of both fluid volume and masses are assured by the
conservative discretization scheme (10) chosen to approximate the free surface equations (2).

In the particular case of M =1 the vertical spacing An represents the total water depth H.
Additionally in this case the vectors U, V, m and G and the matrices S, R and A reduce to one
element and the block pentadiagonal system (14) becomes a simple pentadiagonal system. Thus, in
conclusion, one can easily verify that this algorithm reduces to a two-dimensional numerical method
which is consistent with the two-dimensional, vertically integrated shallow water equations and
which, for 6 = 1, yields the method described in Reference 1. This property of the algorithm leads to a
computer code that can be used for both three-dimensional isopycnal problems as well as two-
dimensional problems.

In applying this model, one should always make sure that all the assumptions made to guarantee
the model applicability are satisfied. One such assumption is that the expected flow is stably stratified
at all times. Thus physically unstable situations cannot be described by this model. In this respect,
since in most geophysical flows the speed of internal waves is much smaller than the speed of free
surface gravity waves, the internal flow may easily become supercritical and a smaller time step than
given by inequality (18) may become necessary in order to obtain sufficient accuracy.

Although much better results are obtained by the present isopycnal model in terms of accuracy and
computer performance, traditional three-dimensional models in Cartesian (x, y, z) co-ordinates retain
the capability of describing the transport of passive components with greater vertical detail.

7. APPLICATIONS

In order to emphasize the more important aspects of the present formulation, we consider first the so-
called ‘lock exchange’ problem which is a severe test case for traditional three-dimensional methods
in (x, y, z) co-ordinates. A rectangular basin of width L =200 m and depth H=0-3 m is initially
filled with two fluids with different densities p; =1-01 g cm™ and p, =10 g cm™ >, separated by a
vertical dam located centrally in the basin (see Figure 2). The two fluids are assumed to be
immiscible, so that once the dam is removed, the resulting flow is expected to keep a sharp interface
of separation which evolves with two discontinuities moving in opposite directions. A natural choice
for the vertical discretization in this case is M =2, so that the initial values for 7, #; and #, are taken
to be no= — 0-3 m, #, =0 m, while ; =0 m to the leftmost part of the basin and #;, = — 0-3 m to
the right. The initial velocities are zero and the discretization parameters are taken to be Ax=1 m
and Ar=10 s. Figure 3 shows the resulting free surface configuration computed with the present
algorithm at time #=1000 s. The required CPU time for this example is of 22 s on a 100 MHz
workstation. No sign of instability has been observed even though the bottom friction and horizontal
and vertical viscosity terms have been neglected. For comparison this test case was reconsidered with
a traditional three-dimensional model in Cartesian (x, y, z) co-ordinates as described in Reference 4,
by including an equation for the density and with the addition of the baroclinic pressure terms in the
momentum equations. The density equation was then discretized with a semi-implicit Eulerian—
Lagrangian method, while the baroclinic terms have been discretized explicitly. Using the same Ax
and At and with 30 vertical layers of constant Az=0-01 m, the calculations were unstable, because
the Courant-Friedrichs—Lewy condition on the internal wave speed was violated (see Figure 4). In
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Figure 2. Initial state for lock exchange problem

Figure 3. Numerical solution at #=1000 s

Figure 4. Unstable solution from an (x, y, z) model

Figure 5. Stable solution obtained with Ar=2.5 s

order to comply with the CFL condition, the calculations were repeated with a smaller time step
At=2-5 s. The resulting concentration field at time = 1000 s was obtained in 174 s of CPU time
and is shown in Figure 5. Not only do the results from the isopycnal model show a sharp fluid
interface, but a substantial reduction in the computational cost results from usage of a simple two-
layer isopycnal model.

Knowledge of lake dynamics is of great importance for the comprehension and management of
water resources.'> Most deep lakes in temperate zones present a classical thermocline structure
during the summer period. Three-dimensional models in either Cartesian (x, y, z) co-ordinates or o-
co-ordinates would require an extremely large number of vertical grid points in order to resolve the
sharp thermocline interface which separates the light, warm water floating on the heavy, cold water.
For such a problem even a simple, two-layer isopycnal model may be much more accurate at a lower
computational cost. This second example is aimed at showing the model applicability to the
simulation of surface and internal waves in stratified lakes. The wind-driven circulation of Lake
Garda has been considered for a typical summer situation. Lake Garda, the largest Italian lake, covers
an area of 379 km? and has a perimeter of 185 km. In the northern part of the lake the water depth
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Figure 6. Bathymetry of Lake Garda

reaches 346 m (see Figure 6). The lake has been covered with a horizontal grid of N,=330 by
N, =515 nodes equally spaced with Ax=Ay=100 m. In order to represent the thermocline, a simple
initial configuration of three flat isopycnal layers is considered with #; = — 30 m, 1, = — 20 m and
n3=0m separating fluids with densities p;=1.002gcm >, p,=1.001 gecm * and
p3=1-0 g cm™? respectively (see Figure 7). Then a strong wind with constant speed 1, =10 m s~ ' u
and v,=20 m s~ ' was applied for the first 12 h of simulation. The resulting longitudinal isopycnal
configurations along the section A-B at times t=12, 36 and 120 h are shown in Figures 8§-10

respectively. Specifically, Figure 8 shows the vanishing of the thicknesses of the top two layers as a

A B

Figure 7. Initial conditions of steady thermocline
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Figure 8. Wind-induced isopycnal layers at r=12 h

Figure 9. Resulting internal seiching generated at =36 h

Figure 10. Almost steady state at =120 h

result of the strong upwelling in the southern part of the lake. Since the wind stops blowing at time
t=12 h, a lake-scale motion in the form of internal seiching is generated (see Figure 9). As time
evolves without wind, the steady state configuration shown in Figure 7 is approached asymptotically.
Figure 10 shows the residual internal waves computed at time /=120 h. The free surface
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displacement is too small to be shown in these figures. In this run the vertical eddy viscosity has been
parametrized by a zero-order, flow-related and Richardson-number-dependent turbulence model
derived under the assumption that the turbulence is in a state of local equilibrium."?

8. CONCLUSIONS

A semi-implicit finite difference method for solving the three-dimensional Reynolds-averaged
Navier—Stokes equations in isopycnal (x, y, p) co-ordinates has been outlined. The implicit coupling
between the momentum and free surface equations renders this scheme unconditionally stable with
respect to the internal and surface wave speeds. Since in most geophysical applications the horizontal
grid spacing is much larger than the layer thickness, the bottom friction and vertical shear terms have
also been discretized implicitly in order to improve the numerical stability. Both the barotropic and
baroclinic components of the hydrostatic pressure are determined implicitly by solving a block
pentadiagonal linear system defined over the two-dimensional x—y domain. The layer-averaged
horizontal velocities are then obtained as solutions of a large set of small tridiagonal linear systems.
Two computational examples have been provided to show the model’s ability to simulate baroclinic
flows.
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