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SUMMARY

In this paper a semi-implicit method for three-dimensional circulation in isopycnal co-ordinates is derived and
discussed. It is assumed that the ¯ow is hydrostatic and characterized by isopycnal surfaces which can be
represented by explicit, single-valued functions. The hydrostatic pressure is determined by using the conjugate
gradient method to solve a block pentadiagonal linear system. The horizontal velocities are determined by
solving a large set of tridiagonal systems. The stability of the resulting algorithm is shown to be independent of
the surface and internal gravity wave speeds. # 1997 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A characteristic analysis of the two-dimensional, vertically integrated shallow water equations shows

that the celerity term �p gH� in the equation for the characteristic cone arises from the barotropic

pressure gradient in the momentum equations and from the velocity derivatives in the free surface

equation.1 Results of this analysis have led to a practical semi-implicit method which has been proved

to be stable and which has been extended to the three-dimensional equations where the pressure is

assumed to be in hydrostatic equilibrium.2 The Courant±Friedrichs±Lewy (CFL) stability condition

relating the time step to the free surface wave speed is not required, because the barotropic pressure

gradient in the momentum equations and the velocities in the vertically integrated continuity equation

are ®nite-differenced implicitly.

Three-dimensional applications of the above semi-implicit scheme to lakes, estuaries and coastal

seas have con®rmed that this algorithm is stable and highly ef®cient (see e.g. Reference 2). Moreover,

when only one vertical layer is speci®ed, this method reduces to the semi-implicit method for the

two-dimensional, vertically integrated shallow water equations as described in Reference 1 (see also

Reference 3 for further details). The resulting two- and three-dimensional methods, however, are only

®rst-order-accurate in time and often introduce unacceptable arti®cial damping.
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The stability, accuracy and ef®ciency of this three-dimensional algorithm have been studied in

Reference 4, where the method has been further generalized by introducing an implicitness parameter

y. When y� 1, this method reverts to the semi-implicit scheme proposed in Reference 2. When y � 1
2
,

the pressure gradient in the momentum equations and the velocities in the free surface equation are

evaluated as an average of their values at time levels n and n� 1, so that the discretization of these

terms is second-order-accurate in time. Since the vertical viscosity terms have been discretized

implicitly, it is proved that for 1
2
4y4 1 a mild stability condition is required on the time step which

is related only to the horizontal discretization increments Dx and Dy through the horizontal viscosity

coef®cient. The three-dimensional simulation of baroclinic ¯ows can be obtained in a direct way by

including the baroclinic pressure terms in the horizontal momentum equations. These terms are

coupled, through an equation of state, to a convection±diffusion equation for each conserved quantity

such as salt, temperature and=or concentration of suspended sediment. The explicit treatment of the

baroclinic pressure terms adds an additional stability restriction which relates the time step to the

speed of internal waves. Nevertheless, an ef®cient and robust implementation of such a simple and

reliable numerical method has resulted in a code (TRIM-3D) capable of handling two- and three-

dimensional problems with extremely ®ne spatial resolution and relatively large time steps.

In this paper a semi-implicit isopycnal circulation model is presented as an alternative to traditional

three-dimensional models in Cartesian (x, y, z) co-ordinates. The present formulation can be regarded

as being three-dimensional in (x, y, r) co-ordinates and is better suited for studying stably strati®ed

baroclinic circulation. Numerically, the new internal and external free surface locations are computed

in a similar fashion as in Reference 1 by using the conjugate gradient method to solve a block

pentadiagonal linear system. The horizontal velocity in each isopycnal layer is then determined by

solving a large set of small tridiagonal systems. The stability of the resulting algorithm is shown to be

independent of the surface and internal wave speeds. The convective and viscous terms in the

momentum equations are conveniently discretized using a Eulerian±Lagrangian approach. The

resulting algorithm conserves mass and volume and applies to simulations of complex three-

dimensional baroclinic ¯ows using ®ne spatial resolution and relatively large time steps. Neither

arti®cial diffusion nor spurious oscillations are generated. This formulation is fully vectorizable and

accounts naturally for vanishing layer thickness.

In the next section the governing equations of a three-dimensional isopycnal ¯ow are introduced

along with the corresponding boundary conditions at the layer interfaces. In Section 3 the basic semi-

implicit ®nite difference discretization is given for the governing equations and for the corresponding

boundary conditions. Section 4 discusses a practical solution algorithm which enables an ef®cient

implementation of the method. A linearized stability analysis of the present method is outlined in

Section 5. The essential properties of the model are summarized in Section 6 and, ®nally, in Section 7

the numerical results from two different test cases are presented and discussed.

2. GOVERNING EQUATIONS

Assuming stable strati®cation, the ¯uid density is monotonic increasing downwards. If density is

conserved, as is approximately the case for most geophysical ¯ows, considerable mathematical

simpli®cations follow from considering the three-dimensional governing equations expressed in

terms of density r rather than the vertical z-co-ordinate.5 A layered isopycnal model is an ideal ¯uid

system that consists of a ®nite number of moving layers stacked one upon another and each having a

uniform density. For a system of M layers with densities r1 > r2 > � � � > rM > 0, let z� Zk(x, y, t)

be the surface of separation between layer k and the layer above k� 1. The surfaces z� Z0(x, y) and

z� ZM(x, y, t) represent the ®xed bottom and the free surface respectively (see Figure 1).
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By setting rM+1� 0, the governing equations can be written, after turbulent averaging and under

the hydrostatic and Boussinesq approximations, in the form
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where uk(x, y, t) and vk(x, y, t) are the horizontal, layer-averaged velocity components in the x-

and y-direction respectively of the kth isopycnal layer (k � 1; 2; . . . ;M ), t is the time, g is the

gravitational acceleration, nh is the horizontal eddy viscosity coef®cient and tx
k�1=2 and ty

k�1=2

represent the shear stress between layers in the x- and y-direction, respectively.

The continuity equations, expressing the principle of conservation of mass, for each layer are given

by
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The boundary conditions at the free surface are speci®ed by prescribing the wind stresses tx
M�1=2

and ty
M�1=2 as

tx
M�1=2 � gT�ua ÿ uM �; ty

M�1=2 � gT�va ÿ vM �; �3�

where gT is a non-negative wind stress coef®cient and ua and va are the prescribed wind velocity

components in the x- and y-direction respectively. At the sediment±water interface the bottom friction

is speci®ed by

tx
1=2 � gBu1; ty

1=2 � gBv1; �4�

where gB is a non-negative bottom friction coef®cient. Typically, gB can be given by the Manning±

Chezy formula or by ®tting it to a turbulent boundary layer. Finally, the shear stress between layers is

taken to be

tx
k�1=2 � 2nv uk�1 ÿ uk

Zk�1 ÿ Zkÿ1

; ty
k�1=2 � 2nv vk�1 ÿ vk

Zk�1 ÿ Zkÿ1

; k � 1; 2; . . . ;M ÿ 1; �5�

Figure 1. Isopycnal con®guration
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where nv is a vertical eddy viscosity coef®cient. This coef®cient can be determined from an

appropriate turbulence closure model, which is beyond the scope of the present investigation. Here it

will only be assumed that nv is a prescribed non-negative function of space and time.

3. NUMERICAL APPROXIMATION

For stably strati®ed ¯ows a numerical model in an isopycnal co-ordinate system is more attractive

than models in either Cartesian (x, y, z) co-ordinates or s-co-ordinates which are based on

geometrical rather than physical considerations. Consequently, various numerical schemes for

equations (1) and (2) have been studied and applied by several authors (see e.g. References 6±10).

In order to obtain an ef®cient numerical method whose stability is independent of the internal and

free surface gravity wave speeds, a semi-implicit scheme is derived. The gradient of surface

elevations in the horizontal momentum equations (1) and the velocity in the free surface equations (2)

are discretized implicitly by the y-method. Moreover, for stability the vertical viscosity terms (3)±(5)

will be discretized implicitly.

The physical domain is subdivided into NxNy rectangular cells of length Dx and width Dy,

respectively. Each cell is numbered at its centre with indices i and j. The discrete velocities uk are

then de®ned at half-integer i and integer j; vk are de®ned at integer i and half-integer j. Finally, Zk are

de®ned at integer i, j.

A semi-implicit discretization for the momentum equations (1) takes the form
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i�1=2; j;k ÿ g
Dt

Dx

PM
m�k

rm ÿ rm�1

r0

�y�Zn�1
i�1; j;m ÿ Zn�1

i; j;m� � �1ÿ y��Zn
i�1; j;m ÿ Zn

i; j;m��

� Dt
nv

k�1=2�un�1
i�1=2; j;k�1 ÿ un�1

i�1=2; j;k�=DZn
i�1=2; j;k�1=2 ÿ nv

kÿ1=2�un�1
i�1=2; j;k ÿ un�1

i�1=2; j;kÿ1�=DZn
i�1=2; j;kÿ1=2

DZn
i�1=2; j;k

;

�6�

vn�1
i; j�1=2;k � Fvn

i; j�1=2;k ÿ g
Dt

Dy

PM
m�k

rm ÿ rm�1

r0

�y�Zn�1
i; j�1;m ÿ Zn�1

i; j;m� � �1ÿ y��Zn
i; j�1;m ÿ Zn

i; j;m��

� Dt
nv

k�1=2�vn�1
i; j�1=2;k�1 ÿ vn�1

i; j�1=2;k�=DZn
i; j�1=2;k�1=2 ÿ nv

kÿ1=2�vn�1
i; j�1=2;k ÿ vn�1

i; j�1=2;kÿ1�=DZn
i; j�1=2;kÿ1=2

DZn
i; j�1=2;k

;

�7�

where DZk� Zk7 Zk-1 denotes the layer thickness which also depends on the spatial location and on

the time. DZk is allowed to vanish in order to account for variable geometries and for the wetting and

drying of isopycnal layers. Of course, the corresponding momentum equation (6) or (7) is not de®ned

at a grid point characterized by DZk� 0 and accordingly the velocity value at this point is not

relevant. Equations (6) and (7) also include the implicit discretizations of the boundary conditions (3)

and (4) at the sediment±water interface and at the free surface for k� 1 and k�M respectively.

Finally, F denotes a ®nite difference operator corresponding to the explicit discretization of the

convective and horizontal viscosity terms. A particular form for F can be chosen in a variety of ways;

for example, a simple space-centred discretization can be used for the convective terms when a

suf®ciently large horizontal viscosity is being used. Alternatively, the upwind discretization does not

require any physical viscosity, but large, and often unrealistic, numerical viscosity is produced by this
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choice. A more convenient formulation of F, from both the stability and the accuracy point of view,

results from use of an explicit Eulerian±Lagrangian discretization. In this case F is de®ned as

Fun
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where a and b denote the Lagrangian displacement caused by the convective terms.1

For each i, j and for any choice used for F, equations (6) and (7) constitute a set of linear

tridiagonal systems which, however, are coupled to the unknown water surface elevations Zn+1. In

order to determine Zn�1
i; j;k , and for numerical stability, the new velocity ®eld is required to satisfy the

discrete analogue of the free surface equations (2):
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Equations (6), (7) and (10) now form a linear system of 3MNxNy equations with unknowns

un�1
i�1=2; j;k , vn�1

i; j�1=2;k and Zn�1
i; j;k .

4. SOLUTION ALGORITHM

For computational convenience, since a system of 3MNxNy equations can be quite large even for

modest values of Nx, Ny and M, this system is ®rst reduced to a smaller, block pentadiagonal system

of only MNxNy equations in which Zn�1
i; j;k are the only unknowns. Speci®cally, upon multiplication by

DZn
i�1=2; j;k and DZn

i; j�1=2;k , equations (6), (7) and (10) are ®rst written in matrix notation as
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where Gn
i�1=2; j, Gn

i; j�1=2 and dn
i; j are vectors containing all the explicit terms in equations (6), (7) and

(10) respectively, while U, V, h, S, R and A are de®ned as
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Then formal substitution of the expressions for Un�1
i�1=2; j and Vn�1

i; j�1=2 from (11) and (12) into (13)

yields
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where ~h � Rh. Since the matrix A is an M-matrix (see e.g. Reference 11, Chap. 15), A-1 has non-

negative elements everywhere. Therefore the matrix STA-1S is also symmetric and non- negative.

Hence equations (14) constitute a block pentadiagonal system of equations for ~hn�1
i; j which is

symmetric and positive de®nite. Thus it has a unique solution which can be ef®ciently determined by

a preconditioned conjugate gradient method. Once the new locations of the density interfaces have

been determined, equations (11) and (12) are used to evaluate the new velocities Un�1
i�1=2; j and Vn�1

i; j�1=2

throughout the ¯ow domain.

5. STABILITY ANALYSIS

A rigorous stability analysis of a non-linear numerical model is quite complex and not always

possible. In this section the stability of the semi-implicit ®nite difference method (11)±(13) will be

analysed by using the von Neumann method under the simplifying assumptions that the governing

differential equations (1) and (2) are linear, with constant coef®cients and de®ned on an in®nite

horizontal domain, or with periodic boundary conditions on a ®nite domain. Additionally, the layer

thickness DZ and the density differences Dr are assumed to be constant. Thus, by neglecting the non-

linear convective terms and the wind speed and by assuming that gT, gB and nv in the matrix A are

non-negative constants, the difference equations (11)±(13) reduce to
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iÿ1=2; j� ÿ �1ÿ y� Dt

Dy
�STVn

i; j�1=2 ÿ STVn
i; jÿ1=2�;

�17�
where FUn

i�1=2; j and FVn
i; j�1=2 are the explicit ®nite difference discretizations of the horizontal eddy

viscosity terms and r is the reduced gravity r�gDr=r0.

Theorem

The semi-implicit ®nite difference scheme (15)±(17) is stable in the von Neumann sense if
1
2
4y4 1 and if the time step Dt satis®es the inequality

Dt 4 2nh 1

Dx2
� 1

Dy2

� �� �ÿ1

: �18�

Proof. By replacing Un
i�1=2; j, Vn

i; j�1=2 and hn
i; j in (15)±(17) with the corresponding Fourier

components Ûnei��i�1=2�a�jb�, V̂nei�ia��j�1=2�b� and ĥnei�ia�jb�, after some simpli®cations, (15)±(17)

become

AÛn�1 � iyprSĥn�1 � f DZÛn ÿ i�1ÿ y�prSĥn; �19�
AV̂n�1 � iyqrSĥn�1 � f DZV̂n ÿ i�1ÿ y�qrSĥn; �20�

ĥn�1 � ipySTÛn�1 � iqySTV̂n�1 � ĥn ÿ ip�1ÿ y�STÛn � iq�1ÿ y�STV̂n; �21�
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where Ûn, V̂n and ĥn are the amplitude functions of U, V and h at time level tn respectively,

i � �p ÿ 1�, a and b are the x- and y-phase angles respectively, p � 2�Dt=Dx� sin�a=2�,
q � 2�Dt=Dy� sin�b=2� and the ampli®cation factor of the explicit difference operator F is given by

f � 1ÿ 2nhDt
1ÿ cos�a�

Dx2
� 1ÿ cos�b�

Dy2

� �
: �22�

Equations (19)±(21) can be written in a more compact matrix form as

PŴn�1 � QŴn; �23�
where

Ŵn �
Ûn

V̂n

ĥn

2664
3775; P �

A 0 ipyrS

0 A iqyrS

ipyST iqyST I

264
375;

Q �
f DZI 0 ÿip�1ÿ y�rS

0 f DZI ÿiq�1ÿ y�rS

ÿip�1ÿ y�ST ÿiq�1ÿ y�ST I

264
375;

with I being the identity matrix of order M. Thus the ampli®cation matrix of the method is G�P- 1Q
and a condition for stability is that the spectral radius of G does not exceed unity independently of a
and b. The characteristic polynomial of the matrix G is det�Qÿ lP� � 0, i.e.

det�Qÿ lP� � det

f DZIÿ lA 0 ÿiproS

0 f DZIÿ lA ÿiqroS

ÿipoST ÿiqoST �1ÿ l�I

24 35 � 0; �24�

where o� 17 y� ly. Next to be shown is that equation (24) cannot be satis®ed by any complex

number l when |l|> 1. Assume that |l|> 1 and consider the matrix A which is real, symmetric,

strictly diagonally dominant and with positive eigenvalues lk5DZ. Note that when inequality (18) is

satis®ed, equation (22) implies | f |4 1. Therefore | fDZ|< |lDZ| and hence the matrix fDZI7 lA
remains strictly diagonally dominant and invertible. Consider then

T �
I 0 0

0 I 0

ipoST�f DZIÿ lA�ÿ1 iqoST�f DZIÿ lA�ÿ1 I

24 35;
so that

det�Qÿ lP� � det�T� det�Qÿ lP� � det�T�Qÿ lP��: �25�
Thus equation (24) can also be written as

det

f DZIÿ lA 0 ÿiproS

0 f DZIÿ lA ÿiqroS

0 0 B

24 35 � 0; �26�

where

B � r�p2 � q2�o2ST�f DZIÿ lA�ÿ1S� �1ÿ l�I: �27�
Since det�f DZIÿ lA� 6� 0, it is only necessary to show that for 1

2
4y4 1 one has det�B� 6� 0. On the

other hand, fDZI7 lA admits an LDLT decomposition, where L is a unitary lower triangular matrix

652 V. CASULLI

INT. J. NUMER. METH. FLUIDS, VOL. 25: 645±658 (1997) # 1997 by John Wiley & Sons, Ltd.



and D is a diagonal matrix with diagonal elements given by fDZ7 llk. Consequently, the

eigenvalues of B are given by

lB � DZ2 r�p2 � q2�o2

f DZÿ llk

� 1ÿ l: �28�

Our objective now is to prove that for 1
2
4y4 1, |l|> 1 and for every k one has lB 6� 0 or,

equivalently,

d � DZ2r�p2 � q2�o2 � �1ÿ l��f DZÿ llk� 6� 0: �29�

For this purpose let l� a� ib, so that substitution of the expression for o into (29), after simple

manipulations, yields

d ��lk � y2DZ2r�p2 � q2���a2 ÿ b2� � f DZ� DZ2r�p2 � q2��1ÿ y�2
ÿ �lk � f DZÿ 2y�1ÿ y�DZ2r�p2 � q2��a
� if2y�1ÿ y�rDZ2�p2 � q2�bÿ �lk � f DZ�b� 2�lk � y2rDZ2�p2 � q2��abg: �30�

Consider ®rst the case b� 0 and |a|> 1. In this case d is real and satis®es the inequality

d �lka2 � rDZ2�p2 � q2��1ÿ y� ya�2 � f DZÿ �lk � f DZ�a
5lka2 � f DZÿ �lk � f DZ�a � �lka� f DZ��aÿ 1� > 0: �31�

Consider next the case b 6� 0. In this case the imaginary part of d is non-zero unless a is given by

a � lk � f DZÿ 2y�1ÿ y�DZ2r�p2 � q2�
2�lk � y2DZ2r�p2 � q2�� : �32�

Should the imaginary part of d be zero, for 1
2
4y4 1, since b2> 17 a2, use of (32) yields the

following inequality for the real part of d:

d < �lk � y2DZ2r�p2 � q2���2a2 ÿ 1� � f DZ� DZ2r�p2 � q2��1ÿ y�2
ÿ �lk � f DZÿ 2y�1ÿ y�DZ2r�p2 � q2��a
� f DZ� DZ2r�p2 � q2��1ÿ y�2 ÿ �lk � y2DZ2r�p2 � q2��4 0: �33�

Thus, when 1
2
4y4 1, under the stability restriction (18) the ampli®cation matrix G does not have

eigenvalues l such that |l|> 1. Therefore the spectral radius of G is no greater than unity and the

scheme (15)±(17) is stable in the von Neumann sense.

Note that, as expected, the stability of the semi-implicit ®nite difference scheme (15)±(17) is

independent of the celerity, bottom friction, wind stress and vertical viscosity. It does depend on the

horizontal viscosity through the mild stability condition (18). This method becomes unconditionally

stable when the horizontal viscosity terms are neglected.

The presence of non-linear convective terms may affect the stability of the method when they are

discretized explicitly by standard schemes which use, for example, central or upwind differences. Use

of Eulerian±Lagrangian methods as described in Reference 1 is always recommended because of

their higher accuracy and because additional conditions for the stability are not required.
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6. PROPERTIES OF METHOD

An important property of the present formulation is that each layer thickness DZk is allowed to vanish.

Thus each isopycnal layer k does not need to be present everywhere at all times. Of course, no ¯ux

will result through those cell faces characterized by DZk� 0 and ¯ooding and drying of tidal ¯ats are

naturally included in this model.

Local and global conservation properties of both ¯uid volume and masses are assured by the

conservative discretization scheme (10) chosen to approximate the free surface equations (2).

In the particular case of M� 1 the vertical spacing DZ represents the total water depth H.

Additionally in this case the vectors U, V, h and G and the matrices S, R and A reduce to one

element and the block pentadiagonal system (14) becomes a simple pentadiagonal system. Thus, in

conclusion, one can easily verify that this algorithm reduces to a two-dimensional numerical method

which is consistent with the two-dimensional, vertically integrated shallow water equations and

which, for y� 1, yields the method described in Reference 1. This property of the algorithm leads to a

computer code that can be used for both three-dimensional isopycnal problems as well as two-

dimensional problems.

In applying this model, one should always make sure that all the assumptions made to guarantee

the model applicability are satis®ed. One such assumption is that the expected ¯ow is stably strati®ed

at all times. Thus physically unstable situations cannot be described by this model. In this respect,

since in most geophysical ¯ows the speed of internal waves is much smaller than the speed of free

surface gravity waves, the internal ¯ow may easily become supercritical and a smaller time step than

given by inequality (18) may become necessary in order to obtain suf®cient accuracy.

Although much better results are obtained by the present isopycnal model in terms of accuracy and

computer performance, traditional three-dimensional models in Cartesian (x, y, z) co-ordinates retain

the capability of describing the transport of passive components with greater vertical detail.

7. APPLICATIONS

In order to emphasize the more important aspects of the present formulation, we consider ®rst the so-

called `lock exchange' problem which is a severe test case for traditional three-dimensional methods

in (x, y, z) co-ordinates. A rectangular basin of width L� 200 m and depth H� 0�3 m is initially

®lled with two ¯uids with different densities r1� 1�01 g cm-3 and r2� 1�0 g cmÿ3, separated by a

vertical dam located centrally in the basin (see Figure 2). The two ¯uids are assumed to be

immiscible, so that once the dam is removed, the resulting ¯ow is expected to keep a sharp interface

of separation which evolves with two discontinuities moving in opposite directions. A natural choice

for the vertical discretization in this case is M� 2, so that the initial values for Z0, Z1 and Z2 are taken

to be Z0� 7 0�3 m, Z2� 0 m, while Z1� 0 m to the leftmost part of the basin and Z1� 7 0�3 m to

the right. The initial velocities are zero and the discretization parameters are taken to be Dx� 1 m

and Dt� 10 s. Figure 3 shows the resulting free surface con®guration computed with the present

algorithm at time t� 1000 s. The required CPU time for this example is of 22 s on a 100 MHz

workstation. No sign of instability has been observed even though the bottom friction and horizontal

and vertical viscosity terms have been neglected. For comparison this test case was reconsidered with

a traditional three-dimensional model in Cartesian (x, y, z) co-ordinates as described in Reference 4,

by including an equation for the density and with the addition of the baroclinic pressure terms in the

momentum equations. The density equation was then discretized with a semi-implicit Eulerian±

Lagrangian method, while the baroclinic terms have been discretized explicitly. Using the same Dx

and Dt and with 30 vertical layers of constant Dz� 0�01 m, the calculations were unstable, because

the Courant±Friedrichs±Lewy condition on the internal wave speed was violated (see Figure 4). In
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order to comply with the CFL condition, the calculations were repeated with a smaller time step

Dt� 2�5 s. The resulting concentration ®eld at time t� 1000 s was obtained in 174 s of CPU time

and is shown in Figure 5. Not only do the results from the isopycnal model show a sharp ¯uid

interface, but a substantial reduction in the computational cost results from usage of a simple two-

layer isopycnal model.

Knowledge of lake dynamics is of great importance for the comprehension and management of

water resources.12 Most deep lakes in temperate zones present a classical thermocline structure

during the summer period. Three-dimensional models in either Cartesian (x, y, z) co-ordinates or s-

co-ordinates would require an extremely large number of vertical grid points in order to resolve the

sharp thermocline interface which separates the light, warm water ¯oating on the heavy, cold water.

For such a problem even a simple, two-layer isopycnal model may be much more accurate at a lower

computational cost. This second example is aimed at showing the model applicability to the

simulation of surface and internal waves in strati®ed lakes. The wind-driven circulation of Lake

Garda has been considered for a typical summer situation. Lake Garda, the largest Italian lake, covers

an area of 379 km2 and has a perimeter of 185 km. In the northern part of the lake the water depth

Figure 2. Initial state for lock exchange problem

Figure 3. Numerical solution at t� 1000 s

Figure 4. Unstable solution from an (x, y, z) model

Figure 5. Stable solution obtained with Dt� 2�5 s
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reaches 346 m (see Figure 6). The lake has been covered with a horizontal grid of Nx� 330 by

Ny� 515 nodes equally spaced with Dx�Dy� 100 m. In order to represent the thermocline, a simple

initial con®guration of three ¯at isopycnal layers is considered with Z1� 7 30 m, Z2� 7 20 m and

Z3� 0 m separating ¯uids with densities r1� 1�002 g cmÿ3, r2� 1�001 g cmÿ3 and

r3� 1�0 g cmÿ3 respectively (see Figure 7). Then a strong wind with constant speed ua� 10 m sÿ1 u

and va� 20 m sÿ1 was applied for the ®rst 12 h of simulation. The resulting longitudinal isopycnal

con®gurations along the section A±B at times t� 12, 36 and 120 h are shown in Figures 8±10

respectively. Speci®cally, Figure 8 shows the vanishing of the thicknesses of the top two layers as a

Figure 6. Bathymetry of Lake Garda

Figure 7. Initial conditions of steady thermocline
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result of the strong upwelling in the southern part of the lake. Since the wind stops blowing at time

t� 12 h, a lake-scale motion in the form of internal seiching is generated (see Figure 9). As time

evolves without wind, the steady state con®guration shown in Figure 7 is approached asymptotically.

Figure 10 shows the residual internal waves computed at time t� 120 h. The free surface

Figure 9. Resulting internal seiching generated at t� 36 h

Figure 8. Wind-induced isopycnal layers at t� 12 h

Figure 10. Almost steady state at t� 120 h
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displacement is too small to be shown in these ®gures. In this run the vertical eddy viscosity has been

parametrized by a zero-order, ¯ow-related and Richardson-number-dependent turbulence model

derived under the assumption that the turbulence is in a state of local equilibrium.13

8. CONCLUSIONS

A semi-implicit ®nite difference method for solving the three-dimensional Reynolds-averaged

Navier±Stokes equations in isopycnal (x, y, r) co-ordinates has been outlined. The implicit coupling

between the momentum and free surface equations renders this scheme unconditionally stable with

respect to the internal and surface wave speeds. Since in most geophysical applications the horizontal

grid spacing is much larger than the layer thickness, the bottom friction and vertical shear terms have

also been discretized implicitly in order to improve the numerical stability. Both the barotropic and

baroclinic components of the hydrostatic pressure are determined implicitly by solving a block

pentadiagonal linear system de®ned over the two-dimensional x±y domain. The layer-averaged

horizontal velocities are then obtained as solutions of a large set of small tridiagonal linear systems.

Two computational examples have been provided to show the model's ability to simulate baroclinic

¯ows.
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